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Abstract

Suppose a set of images contains frequent occurrences

of objects from an unknown category. This paper is aimed

at simultaneously solving the following related problems:

(1) unsupervised identification of photometric, geometric,

and topological (mutual containment) properties of multi-

scale regions defining objects in the category; (2) learning

a region-based structural model of the category in terms

of these properties from a set of training images; and (3)

segmentation and recognition of objects from the category

in new images. To this end, each image is represented by

a tree that captures a multiscale image segmentation. The

trees are matched to find the maximally matching subtrees

across the set, the existence of which is itself viewed as ev-

idence that a category is indeed present. The matched sub-

trees are fused into a canonical tree, which represents the

learned model of the category. Recognition of objects in a

new image and image segmentation delineating all object

parts are achieved simultaneously by finding matches of the

model with subtrees of the new image. Experimental com-

parison with state-of-the-art methods shows that the pro-

posed approach has similar recognition and superior local-

ization performance while it uses fewer training examples.

1. Introduction

Suppose we are given a set of images in which objects

having a canonical photometric and geometric structure,

i.e., belonging to a category, occur frequently. By geomet-

ric structure here we mean the layout, and intrinsic and rel-

ative geometric properties of image regions that comprise

an object, and by photometric structure we mean the intrin-

sic and relative properties of intensity or color variation that

characterize the object regions. Whether, and where, any

objects from the category occur in a specific image is not

known. We are interested in discovering whether a category

does indeed occur in the image set, and if yes, in obtaining a

compact model of the canonical geometric and photometric

structure defining the category. A model derived from such

training can then be used to determine whether a new test

image contains objects from the category, and when it does,

to segment all instances of the category in the image by pre-

cisely delineating all defining regions of each instance.

Our approach involves the following major steps. (1)

Images are represented as multiscale segmentation trees,

obtained by using a segmentation algorithm discussed in

[2, 15]. Nodes in the segmentation tree at upper levels cor-

respond to more salient regions, while their children nodes

capture less salient details, e.g., more homogeneous sub-

regions with smaller intensity contrasts, as illustrated in

Fig. 1. The segmentation tree may be highly unbalanced,

with nonleaf nodes having varying numbers of children and

leaf nodes occurring at multiple levels, as dictated by the

image topology. Any cutset of the tree partitions the im-

age, thus providing a two-dimensional layout of the regions.

The parent-child relationship yields an additional dimen-

sion, that of scale. The resulting three-dimensional struc-

ture serves as a rich description of the image for deriving

category models. (2) The segmentation tree involves spec-

ification of geometric properties of segmented regions, in-

cluding region area, boundary shape, relative distances be-

tween regions, and photometric properties including gray

level, and gray-level variance of regions. If a category oc-

curs, we expect that subimages with category specific val-

ues of the above properties will be abundant. Each such

subimage will correspond to one or more subtrees in the

segmentation tree, thus leading to frequent occurrences of

subtrees with similar properties. These subtrees are de-

tected by matching segmentation trees of the image set,

where the matching algorithm minimizes a cost defined in

terms of the above properties. The result is a set of subtrees

from each image that have cross-image matching cost below

a minimum level. Their existence indicates that a category

is present. (3) The tree matching algorithm identifies ex-

actly which properties are shared by the matching subtrees.

These properties and the subtree structure are then used to

define the category model. The model thus specifies: how

segmented regions are recursively laid out to comprise an

object from the category, and what their intrinsic and rela-
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(a) Input (b) Tree levels: 2, 3, 4

Figure 1. Segmentation tree; regions (nodes)
at a specific level projected onto the image

plane; the root is at level 1; regions at level 3
are contained within those at level 2, etc.

tive geometric and photometric properties are. (4) When a

new image is encountered, its segmentation tree is matched

against the category tree. If one or more matches are found

with sufficiently low costs, the matching subtrees specify

the exact boundaries of the recognized objects, and their

constituent regions.

2. Relationship to Prior Work

The problem of unsupervised category modeling has

been attracting increasing interest in recent years. Almost

entire work in this area models a category as a statistical

distribution of appearances and relative locations of point

feature descriptors and curve fragments, here both referred

to in the sequel as local features, [6, 7, 8, 10, 1, 14]. In

contrast, as the basic vocabulary of a category model, we

use segmented regions, which are less sensitive to light-

ing, scale, and viewpoint changes than local features. Also,

segments provide for richer geometric and photometric de-

scriptions of perceptually meaningful object parts. All this

allows extraction of more robust and reliable structural cat-

egory models.

Majority of the existing approaches to object categoriza-

tion define object detection as image classification [1, 7, 6,

14]. They typically suffer from detecting multiple occur-

rences of the same object, and, hence, have to hypothesize

the number of objects and their parts present in the image.

Moreover, when objects are detected, it is based only on

finding their associated local features, which does not de-

lineate the objects within the image. In [10], for example,

a probabilistic map is computed which is consistent with

the detected local features. To ultimately estimate segment

boundaries, it is necessary to threshold their probabilistic

map, but this suffers from errors because both detected lo-

cal feature locations as well as thresholds are not consis-

tent across images. In contrast, the proposed framework

allows us to redefine object detection and segmentation as

precisely localizing boundaries of regions comprising all

objects from the category present in the image. Since our

structural model is in terms of image segments, the matched

subtrees between the model and a new image automatically

identify all parts of the image occupied by the recognized

objects, and, hence, their precise boundaries.

Further, our approach offers two more advantages over

the aforementioned prior work. First, in the prior work,

the training set must be diligently selected to ensure that

it does contain the category. We do not suffer from this

constraint, since we need to examine only the relative fre-

quencies of the matching subtrees which automatically dis-

regard images without an object from the category of in-

terest. Second, we do not need to model the background

as a category by itself, and, hence, do not require a careful

preparation of the background database, as opposed to prior

work. Unlike discriminative approaches [1], we accom-

plish a satisfactory detection even when the training set con-

tains less than ten images, similar to generative approaches

[6]. In some existing work [14], local features and their

higher-level groupings (e.g., topics) can be shared across

categories. In our approach, analogous sharing occurs when

the same nodes and subtrees occur in the canonical models

of multiple categories. Therefore, our framework inherently

captures shared model attributes across categories.

Related to ours is also work on learning a canonical

shape model from example images discussed in [9]. In-

stead of trees, they use planar, region-adjacency graphs, ob-

tained from a segmentation algorithm, to represent images.

Learning is conducted as a search for the lowest common

abstraction in the space of all possible region groupings

of given region-adjacency-graph exemplars. Similarly, in

[11], the authors represent images as planar graphs, where

nodes are detected blobs, and edges capture proximity rela-

tions between node pairs. They learn a hierarchical shape

model through many-to-many spectral-based matching of

blob graphs across the training set. Next, in [17, 16], the

authors propose to learn dynamic-structure trees as genera-

tive models of objects. Similar to our approach, they use the

dynamic tree to conduct object detection and localization

simultaneously through inference of both random variables

and random tree structure. The same image representation

as in our approach is used in [13]. The authors incremen-

tally refine the canonical model through matching it against

image trees in the training set. Their learning is realized

within a neural network framework, while matching is done

top-down, in a greedy manner, only between regions at the

same tree level, such that a bad match between two regions

penalizes attempts to match their respective descendants.

In the following sections, we present region properties

associated with their corresponding nodes in segmentation

trees (Sec. 3), the tree matching algorithm (Sec. 4), the al-

gorithm to obtain a canonical category model from a set of

trees (Sec. 5), the complexity of learning (Sec. 6), and fi-

nally the experimental validation of our approach (Sec. 7).



3. Specification of Node Attributes

In this paper, we assume that the segmentation trees of

input images are given. Details of the segmentation algo-

rithm can be found in [2, 15]. The attributes associated with

each tree node (i.e., region) comprise intrinsic region ge-

ometric and photometric properties, as well as extraneous

properties of that region’s neighborhood. The intrinsic re-

gion properties we use are concerned with its gray level dis-

tribution, size and shape. Let µv and σ2
v denote the mean

and variance of the gray level values of all pixels in de-

tected region v. Also, let av denote the area of region v,

whose center of mass (CM) is located at image coordinates

(xv, yv). To describe the boundary shape of v, we parse the

image into K pie slices, each of which begins at the CM of

v, (xv, yv), and subtends the the same angle 2π/K . Next,

we compute the normalized histogram hv(k), k = 1 . . .K ,

of the number of pixels of region v that fall in pie slice

k. The histogram is made rotation invariant by assigning

k = 1 to the slice having the largest histogram value, valid

under the assumption of negligible variations in viewpoint

of scenes without occlusion. In case rotation invariance is

not desirable, the slice with label k = 1 is aligned with the

“x” image axis. The entropy of the normalized histogram

is defined as Hv , −
∑K

k=1 hv(k) log hv(k). Clearly, the

outlined list of useful region intrinsic properties, can be eas-

ily modified to reflect the demands of different applications.

Together, the intrinsic region properties are used to com-

pute a measure of the nodes salience, which is in turn used

to weigh the nodes influence on the overall matching pro-

cess. A positive weight, wv , defined as

wv , λ[
|µv−µp|

max(µv, µp)
+

|σ2
v−σ2

p|

max(σ2
v , σ2

p)
]+(1−λ)[

av

ap

+Hv],

(1)

is assigned to node v, where p is the parent of v, and

λ ∈ [0, 1] represents the significance given to photometric

relative to geometric properties.

The single extraneous region property we use captures

the distribution of other salient regions in v’s neighborhood.

Specifically, for each node v, we compute a context vec-

tor,
−→
Φ v, following a model similar to that used in our basic

segmentation algorithm [2, 15]. Suppose each node v rep-

resents a charged particle with positive charge wv . Then,
−→
Φ v is defined as the residual attraction force at the CM of

region v due to all other regions u occurring in a suitably

defined neighborhood Nv, given by

−→
Φ v =

∑
u∈Nv

wu

d2
uv

−→r uv , (2)

where duv is a distance between the CMs of regions u and

v, and −→r uv is a unit vector representing the direction of at-

traction, and pointing from the CM of u to that of v. Since

(wu/d2
uv) decays fast for nodes u ∈ Nv beyond v’s sib-

lings, we define Nv as consisting of v’s siblings, only. The

context vector,
−→
Φ v=[|

−→
Φ v|, φv], is made rotation invariant if

angle φv is computed relative to the geometry of v’s parent,

e.g., counter-clockwise from the axis of the pie slice of v’s

parent having the largest histogram value. Otherwise, φv is

computed with respect to the “x” image axis.

Finally, the attribute vector associated with each node v

is Ωv=[µv, σ
2
v , av, xv, yv, hv(1), . . ., hv(K),

−→
Φ v].

4. The Tree Matching Algorithm

We use a modified version of the tree matching algo-

rithm discussed in [18, 19]. Given two trees, the objective

is to find their maximum common subtree that maximizes a

match measure. In [18, 19] this measure is maximized re-

cursively, for subtrees rooted at different candidate match-

ing nodes, as the two trees are traversed bottom-up. We

expand the scope of the match measure to include the can-

didate nodes’ context vectors. To formalize our approach,

below, we first present necessary definitions.

Given two trees t=(Vt, Et, Ωt) and t′=(Vt′ , Et′ , Ωt′),
where V is the set of nodes, E⊆V ×V is the set of edges,

and Ω is the set of node attributes, the goal of tree match-

ing is to find the maximum subtree isomorphism. Any bijec-

tion f :Ut→Ut′ , where Ut⊆Vt and Ut′⊆Vt′ , is called subtree

isomorphism if it preserves the connectivity and ancestor-

descendent relations between the nodes in t and t′. The

objective is to find a subtree isomorphism that maximizes a

quality measure, called utility, defined as

U(Ut, f(Ut)) =
∑

v∈Ut
[wv + wf(v) − mvf(v)]. (3)

Thus, the goal of the subisomorphism algorithm is to maxi-

mize U by matching salient nodes with large wv and wf(v)

values, while discarding those node pairs whose cost of

matching, mvf(v), is high.

Given node attributes, Ωv and Ωv′ , we specify the cost

of matching regions v and v′ as

mvv′=λ (µv−µv′ )2

σ2
v+σ2

v′

+(1−λ)[|av

ap
−av′

ap′
|+ρvv′ ]+||

−→
Φ v−

−→
Φ v′ ||,

(4)

where p and p′ are the parents of v and v′, respectively, and

λ ∈ [0, 1] is a desired weight of the photometric properties

relative to geometric properties. The cost of matching the

shapes of two regions v and v′, represented by their normal-

ized histograms hv and hv′ , is defined as the χ2 test statistic:

ρvv′= 1
2

∑K

k=1
(hv(k)−hv′ (k))2

hv(k)+hv′ (k) .

The tree-matching problem is solved recursively through

a set of sub-matching problems. Suppose that at any stage

during matching, for all descendants u of v in t, and for all

descendants u′ of v′ in t′ we have previously computed the

maximum utility, given by (3), of subtrees rooted at u and



u′, denoted as U(u, u′). Then, our goal is to find the opti-

mal set of (u, u′) pairs, referred to as consistent descendant

pairs, that preserve connectedness and ancestor-descendant

relationships in t and t′, while maximizing U(v, v′). From

(3), we have

U(v, v′)=wv+wv′−mvv′+
∑

(u,u′)∈Cvv′
U(u, u′) , (5)

where Cvv′ denotes the set of selected consistent pairs of

descendants of v and v′. Once computed, U(v, v′) is used

to recursively compute the utility of the parent node pair,

(p, p′), if (v, v′) ∈ Cpp′ .

As shown in [19], finding Cvv′ is equivalent to solv-

ing the maximum weighted clique problem over an aux-

iliary weighted graph, whose nodes (u, u′) are defined as

the Cartesian product of all the descendants of v and v′,
and whose edges connect only consistent child pairs. The

weight associated to each node (u, u′) in this auxiliary

graph is equal to utility U(u, u′). To compute the maxi-

mum weighted clique of this graph, we use the replicator

dynamics algorithm thoroughly discussed in [12].

Now, from the maximum weighted cliques obtained for

each pair of nodes (v, v′), v∈t and v′∈t′, we are in a posi-

tion to compute U(v, v′) using (5). Then, the pair (v, v′)∗

with the largest utility determines the maximum subtree iso-

morphism between t and t′. In this maximum common

subtree, the set of matched node pairs is determined by the

clique Cvv′∗ . Since our goal is to extract all common, salient

subimages in t and t′, we select all common subtrees whose

utility is above a specified threshold, as explained in Sec. 6.

5. Canonical Model

From the set of matched subtrees, we derive the canon-

ical model as their tree-union, similar to the approach dis-

cussed in [18]. The tree-union is constructed by first finding

the maximum common subtree among the trees in the set,

and then by adding the extraneous nodes and edges that did

not get matched. Unlike in [18], however, nodes in our tree-

union are associated with the frequency of their occurrence

in the set. Another difference is that we compute node at-

tributes in the tree-union as the median of the correspond-

ing sample attributes from the set, to reduce the influence

of noise present. Below, we briefly present our algorithm

for computing tree-unions from a different point of view

than that given in [18], by relating it with a more general

algorithm for finding the weighted minimum common su-

pergraph, discussed in [3].

The difference between tree t and its subtree s, t−s, is

obtained by removing all nodes and edges in s from t, and

all the edges that connect s with the rest of t. The latter

set of edges is called the embedding of s in t, and denoted

as ε(s, t). The union of two distinct trees t and t′, t ∪E t′,

is a graph composed of t and t′, joined by a given set of

edges E. The maximum common subtree between t and t′

is a tree τ , such that there exist subtree isomorphisms from

τ to t and from τ to t′, and there exists no other common

subtree τ ′ of t and t′ whose utility, given by (3), is larger

than the utility of τ . The tree-union of t and t′, is a directed

graph, T =(VT , ET , ΩT ), such that there exist the subtree

isomorphisms from t to T , characterized by utility U(t, T ),
and from t′ to T , with utility U(t′, T ), such that the sum of

these utilities is maximum over all possible isomorphisms.

Here, utility U is defined as in (3). The following theorem

explains how to compute the tree union.

Theorem 1. Given t and t′, their tree-union is T =
τ∪ε1

(t−τ)∪ε2
(t′−τ), where ε1=ε(τ, t) and ε2=ε(τ, t′).

The proof of Theorem 1 is similar to the proof given in

[3] for the maximum common supergraph.

Finding T becomes infeasible over a large set of trees.

Therefore, we resort to a suboptimal approach, where in

each iteration the tree-union is extended by adding a new

tree from the set. To diminish the effect of tree ordering, we

first generate R random permutations, π1, . . . , πR, of the

tree set {t1, . . . , tN}, and then compute tree-union T (πi)
for each permutation πi, as summarized in Algorithm 1. Ul-

timately, the optimal T (πi) is selected.

Algorithm 1: Finding T (π) for π({t1, . . . , tN})

Find τ of t1 and t2 as explained in Section 4;1

ε1=ε(τ, t1); ε2=ε(τ, t2); T =τ∪ε1
(t1−τ )∪ε2

(t2−τ );2

for i = 3, N do3

Find τ of T and ti ;4

ε1=ε(τ, T ); ε2=ε(τ, ti); T =τ∪ε1
(T −τ )∪ε2

(ti−τ );5

end6

T (π) = T ;7

While Step 4 of Algorithm 1 involves solving an NP-

complete problem when finding the maximum common

subgraph, as discussed in [3], this is not the case in this

paper, since the maximum common subtree is computed

over directed graph T and tree ti from the set. Indeed, even

though T contains multiple paths between the same pairs of

nodes, it is possible to treat all these paths as mutually ex-

clusive [18], and to find the maximum subtree isomorphism

between T and ti, as explained in Section 4.

In [18], in Step 4 of Algorithm 1, all the node weights

of previously matched trees from the set are kept, and as-

sociated with the corresponding node in the tree-union.

Thus, suppose n trees from the set have already been

added to the tree-union in Steps 3-6. Then, a vector

Wv=[w
(1)
v , . . . , w

(n)
v ] is assigned to each node v∈T , where

w
(j)
v =0 if no node in tree tj got matched with v, and

w
(j)
v =wu if node u∈tj got matched with v. In Step 4 of

the next n+1 iteration, to find the maximum subtree iso-

morphism between ti and T , f :Uti
→UT , where Uti

and

UT are subsets of nodes in ti and T , respectively, the



following utility function is maximized: U(Uti
, UT ) =

∑n

j=1

∑
(u,v)∈Uti

×UT
[wu+w

(j)
v −m

(j)
uv ].

The above formulation, however, is not resilient to noise

present in the structure and node attributes of the trees in

the set. To alleviate this problem, in this paper, we spec-

ify the attributes of v in T as the median of attributes of all

those nodes in the set that got matched with v. For exam-

ple, suppose in the first n iterations of Steps 3-6, ℓ nodes

from the set, {u1, . . . , uℓ}, have been matched with v∈T ,

then Ωv=median(Ωu1
, . . . , Ωuℓ

). Once Ωv is computed, we

specify the weight of v∈T , wv, as in (1). Also, the cost of

matching any node u in the set with v∈T , muv, is defined

as in (4). Given these values, Step 4 of the (n+1)th iteration

maximizes the utility function

U(Uti
, UT ) =

∑
(u,v)∈Uti

×UT
[wu + ηvwv − muv], (6)

where ηv=ℓ/n is the frequency of occurrence of v∈T in

n previously added trees from the set to T . The saliency of

v∈T , wv , is weighted by ηv to force the matching algorithm

in Step 4 to eliminate all those candidate nodes in T that

represent structural noise in the set.

The best approximation of the tree-union is selected

based on the following entropy function:

HT (πi) = −
∑

v∈T (πi)
ηv log ηv , (7)

which achieves a minimum for the sets containing all iso-

morphic trees. Thus, the permutation πi for which HT (πi)
is minimum over all π1, . . . , πR is selected to compute

T (πi) as the best approximation of the tree-union. In the

case of multiple solutions, the T (πi) with the smallest num-

ber of nodes is selected

6. Computational Complexity

Fig. 2 illustrates the two main steps of our approach

to learning the canonical model of an unknown category,

which, as stated earlier, is efficient even when the number

of example images is small. Thanks to a small training set,

it is feasible to conduct, in the first step, pairwise match-

ing of all image trees by using the algorithm presented in

Sec. 4. Suppose there are M training trees, which all differ

in structure and number of nodes |V |. Next, recall that for

matching two trees t=(Vt, Et, Ωt) and t′=(Vt′ , Et′ , Ωt′) it

is necessary to solve for |Vt| · |Vt′ | maximum clique prob-

lems, each involving relaxation labeling [12]. Relaxation

labeling in such problems typically converges after only a

few iterations, where each iteration includes O(|G|2) mul-

tiplications, and where |G| is the number of nodes in a

graph whose maximum clique we are supposed to compute.

Therefore, the complexity of the first step is O(M2|V |4).
In this paper, we select the maximum matching subtrees

by thresholding the measure of their match, i.e., their utility

1 M. . .12 …
2

M
t1

t2

tN

. . . T

Figure 2. Learning: (1) Image pairwise match-
ing, (2) Computing the tree-union; frequency

of tree-union nodes is indicated by different

shades of gray.

values. The threshold is set to one standard deviation be-

low the maximum utility value obtained over all M(M−1)
image pairs. This produces a set of N maximum common

subtrees in 2M(M−1) trees. In the second step, this set

of extracted subtrees is used to construct the tree-union as

explained in Sec. 5. Suppose no subtree has more than |Vs|
nodes (|Vs|≪|V |). Then, for R permutations of the set of

subtrees, the complexity of the second step is O(RN |Vs|4).
The segmentation algorithm of [2, 15] typically produces

trees with no more than approximately 100 nodes, i.e.,

|V |≈100. In our experiments, we set R=10. In case there

are M=20 training images, as for example when learning

the model of side-view cars in the UIUC database [4] (see

Sec. 7), the computation time of our learning algorithm is

less then two hours on a 2.4GHz, 2GB RAM PC. This does

not include segmentation algorithm. Therefore, our learn-

ing algorithm is computationally feasible, and very efficient

as demonstrated in the following section.

7. Experiments and Discussion

For empirical validation we use the following benchmark

datasets: Caltech faces (435 images) and cars rear view

(126 images) [5], and UIUC cars side view (single scale,

170 images) [4]. While the Caltech images contain only a

single object from the category, the UIUC images contain

multiple occurrences of cars. Both databases also contain

background images, in which objects from the target cate-

gory do not appear, referred to as negative examples. To

test rotational invariance of our approach, we form a fourth

dataset by randomly rotating Caltech faces, such that the

size of the original scene is kept intact. The missing back-

ground of the new rotated image is “filled out” by pasting

a randomly selected background image from the Caltech

database, as illustrated in Fig. 3.

The original three datasets, containing objects from the

category, are referred to as positive examples. Training is



Figure 3. Detection and localization of Caltech faces: (top row) randomly rotated images; the results

are obtained when the model is learned on M/2=3 (middle row), and M/2=6 (bottom row) positive
training images, and for the highest F -measure. The training set did not contain a bearded face.

conducted on a number of randomly drawn positive and

negative examples. This is done to ensure unsupervised

training, where it is not a priori known whether a training

image contains objects from a category. In the training set

of M = {4, 6, 8, . . . , 20} images only half of the images

are positive. After selecting the training data, the remaining

positive examples are used as the test set. Each experiment

is repeated 5 times for each value of M to estimate the av-

erage performance.

The performance is evaluated in terms of the accuracy of

object detection and localization. Detection and localization

in test images are performed jointly by matching the tree-

union model with the test-image trees. Those common sub-

trees whose cost function is larger than a specified threshold

are adjudged as detected objects. The threshold is varied

to plot a recall-precision curve, as a preferred measure of

performance with respect to object detection and localiza-

tion, compared to those used by classification-based tech-

niques (e.g., ROC curve, and equal error rate) [1]. We de-

fine: Recall = TP/nP , and Precision = TP/(TP+FP). To

obtain the ground truth, we manually delineated the outer

contours of target objects in all test images, the total num-

ber of which is nP . The matched subtree in a test im-

age is said to be false positive (FP) in two cases: (1) if

the intersection of the area it covers in the test image and

the labeled object area is less than 75% of the true ob-

ject area, or (2) if more than 25% of the matched subtree

area lies outside of the true object contours. The remain-

ing cases are declared true positives (TP). The reported per-

formance results are computed for the highest F -measure,

where F = 2 · Precision · Recall/(Precision+Recall). Lo-

calization error is defined as the total unmatched object area

expressed as a percentage of the total area of all target ob-

jects in the test image, computed for the highest F -measure.

We find that these performance criteria correspond closely

with our own subjective judgement. Note that our evalua-

tion is more strict than in [7, 6], where object detection is

interpreted as image classification, and than the evaluation

discussed in [1], where correct detection is required to lie

within an ellipse of a certain size centered at the centroid of

the true object area.

For the two car datasets, the mean gray level of seg-

mented regions is excluded when computing the matching

cost function, but not the regions’ gray-level variance. Also,

for rotated faces, the rotation-invariant formulation of shape

histograms and context vectors is used, which is valid since

the original faces do not undergo major changes in view-

point and occlusion across the set. It may be desirable to

optimize parameter λ, which represents the relative influ-

ences of photometric and geometric region properties on

tree matching, to obtain the best detection performance. For

the four datasets, our experiments, however, suggest that the

optimal choice of λ is 0.5, as shown in Fig. 5. A plausible

explanation of this could be that the choice of λ is indeed a

function of region properties themselves (e.g. scales), and

that the dominance of either photometric or geometric prop-

erties is averaged out over the large range of region property

combinations present in our data. All results in the sequel

are obtained for λ = 0.5.

Figs. 3, 4, 6 illustrate object detection results for the

highest F -measure. In each, the top row consists of input

test images. The middle and bottom rows present detection

results of two experiments differing in the number of posi-

tive examples drawn to form the training set. The examples

show that detection and localization are achieved simulta-

neously. The highlighted areas are the extracted subimages



Figure 4. UIUC cars side view: the results are obtained for for the highest F -measure, using M/2 = 5
(middle row), and M/2 = 10 (bottom row) positive training images.
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Figure 5. Recall over a range of λ values; λ =
0.5 is optimal. The legend shows the number

of positive examples in the training set.

identified as occupied by the detected object, and the dark

areas are those where the cost of matching with the canon-

ical model exceeds the threshold determined by the highest

F -measure. As expected, the detection and localization per-

formance improves as the number of positive training exam-

ples increases. To illustrate our measures of true and false

positives defined above, observe the leftmost car image in

Fig. 4. For M/2 = 5 positive training images, there are two

false positives, and one true positive has large localization

error (mismatch with the actual car region). For M/2 = 10,

the two false positives in the previous case disappear and lo-

calization error of the true positive decreases.

Averages of object detection and localization results for

the highest F -measure are summarized in Table 1. The av-

erage recall, precision and localization error obtained for

rotated faces are less than one standard deviation different

from the values of their corresponding quantities reported

in Table 1 for faces. This small difference (in part due to a

relatively small number of trials over which the results are

averaged, and the quantization error accompanying rotation

with arbitrary digital rotation angles) verifies that our ap-

proach is rotation invariant, when the orientation indepen-

Figure 6. Results on Caltech cars rear view us-

ing M/2 = 10 positive training images.

Faces Cars side Cars rear

# Posit. 6 5 10 5 10

Recall 84.6±1.3 71.2±2.5 85.5±2.7 67.5 80.2

Precision 78.2±1.8 73.8±2.8 87.5±2.4 62.4 72.2

Loc. error 6.8±1.5 11.4±3.1 9.3±3.4 13.4 12.8

Table 1. Average recall, precision, and local-

ization error (in %). The second row shows
the number of positive training examples.

dent tree representation of the image structure is used. For

faces, we obtain the best recall and precision, whereas the

Caltech cars rear view dataset proves the most challenging.

Huge variations in the appearance of the rear window, due

to the reflections of surround, lead to the appearance of spu-

rious regions in varying locations, not consistently present

in training images, which do not become part of the learned

model, and, therefore, are not matched with the model. Typ-

ically, these effects are large enough to penalize the cor-

responding matched subimage from being interpreted as a

true positive, but localized enough for the subimage to be

evaluated as a false positive.

Recall-precision curves are given in Figs. 7 and 8. As

can be seen, only a small increase in the number of positive
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Figure 7. Caltech faces: (left) Recall using

M/2 = 2, 3, . . . , 6 positive training examples;
(right) Recall-Precision curves for 5 and 6

positive training examples.

examples yields significant improvements in the detection

performance. This is also illustrated in Fig. 7(left) where

recall values are computed for increasing numbers of posi-

tive training examples. Apparently, the canonical model is

capable of capturing the structural and geometric and pho-

tometric properties within the object category of faces from

a very small training set (.6 − .75 recall for two positive

training images). Moreover, the model improves consider-

ably with each newly added positive example.

The following recall-precision results on the UIUC cars

side view dataset have been reported in the literature: 79%

in [1], 88.5% in [7], 97.5% in [10]. Since these results have

been obtained by using less demanding evaluation criteria

than ours, the question as to which method is better on the

given data still remains to be examined carefully.
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